Development of a Novel 20 µm Cut-off Microporous Silicon Nitride Membrane for Separating and Analyzing Microplastic Particles in Potable Water

Teagan Horan₁, Joshua Miller₁ Jared Carter₁, Gregory Madejski₂, Michael Deible₃ and James Roussie₁*

. SiMPore Inc., West Henrietta, NY 14586 2. University of Rochester, NY 14620 3. RJ Lee Group, Monroeville, PA 15146 * Corresponding Author: jroussie@simpore.com

Abstract

Track-etched polycarbonate (PCTE) membranes have been used as a filtration standard for microplastic (MP) capture and analysis across a variety of studies.

However, the track-etch method creates pores of varying angles that complicate onmembrane particle analysis and sometimes create merged multi-pores that allow passage of MPs > 20 μ m. Additionally, the membrane's overall ~3 μ m thickness makes it prone to folding and wrinkling, which may complicate microscopy analysis.

To address these issues, a novel 20 µm gold-coated microporous silicon nitride (MPSN-Au) membrane was developed and compared directly against gold-coated PCTE (PCTE-Au) membranes via manual manipulation and processing time, pore characteristics, light microscopy particle analysis, and Raman/FTIR analysis.

We found that on an area-normalized basis, MPSN-Au membranes offered greater gas and water flux over PCTE-Au. The regular pore geometry of MPSN-Au membranes made particle

Water and Gas Flux

PCTE-Au

600

400

200

SURFACE AREA NORMALIZED WATER FLUX

SURFACE AREA NORMALIZED GAS FLUX

Manipulation Processes

imaging and spectral analysis more consistent and easier to discriminate between captured PS particles, when compared to PCTE-Au membranes.

Total handling and processing time for each membrane was compared, which determined that the total processing time (including filtration, automated image acquisition, and particle counting) was 161.56% faster on average for MPSN-Au than PCTE-Au membranes.

In an 8-hour workday, 85.13% more MPSN-Au membranes can be handled, processed, and imaged than PCTE-Au, which equates to 66 vs 26 total samples, respectively.

Overall, these data demonstrate the utility of MPSN-Au membranes and suggest they can significantly improve testing time-related efficiency in all aspects of normal use-case situations as compared to PCTE-Au membranes.

MEMBRANE TYPE

EXPERIMENTAL AVERAGE WATER FILTRATION RATE

MPSN-Au

CAT

5065

Vendor

SiMPore

MPSN-Au membranes had a 137.34% faster water flux and a 151.54% faster gas flux when surface area was normalized.

MPSN-Au

PCTE-Au membranes experimentally filter water faster due to the difference in filtration surface area. • PCTE-Au - 78.54 mm²

MPSN-Au – 9 mm²

Membrane Characteristics

Microscopy Particle Counting

Algorithmic Particle Analysis of Light Microscopy Images

Imaging and particle analysis system - Keyence vhx-7000

27.7%

12%

Thickness

(µm)

0.40

Gold coating

thickness (nm)

120

20

Pore Diameter Porosity

18.71 μm

	2	5	4	5	0	/	0	9	TO	ΤТ	ΤZ	ТЭ	14	ТЭ	TO	Т/	TO	19	20	
SAMPLE #																				

Measurements of pore sizes taken from SEM images using ImageJ

- MPSN-Au pore size was consistent (Min 18.447 µm, Max 19.126 µm)
- SPI Supplies E20025-MB PCTE-Au - Wide variability of pores required classification into three categories—singlet, doublet, and multiplet. (Min – 19.86 μm, Max – 67.308 μm)
- <u>MPSN-Au</u> appeared to have larger overall particle sizes captured on the membrane (18.7 -426.5 μm range).
- Resultant particle counts 1810
- <u>PCTE-Au</u> Smaller particle sizes counted, many of which appear to pores mistaken for particles based on diameter sizes returned (2.8 – 166 µm range)
- Resultant particle counts 9382

Filter type

MPSN-Au

PCTE-Au

Composition

Gold-coated silicon nitride

track-etched

Gold-coated polycarbonate 23.60 µm

Conclusions

- MPSN-Au membranes offer a faster and more consistent method of manual manipulation than PCTE-Au.
 - When accounting for experimental filtration times, automated acquisition, and manual manipulation time, 85.13% more MPSN-Au membranes can be processed than PCTE-Au (66 vs 26, respectively, in an 8-hour workday)
- MPSN-Au had 137.34% and 151.54% greater surface area-normalized water and gas flux rates, respectively, versus PCTE-Au, but an experimentally 120.25% slower filtration rate due to the smaller surface area.
- MPSN-Au offers a highly consistent pore geometry, which improves particle counting methods by eye and by algorithm. PCTE-Au's inconsistent pore geometry and angle may lead automated counting systems to count pore edges as particles and misrepresent particle counts by a significant margin. However, the concentration factor of the MPSN-Au membranes may result in multilayer formation with the same filtered volume due to the smaller surface area.
- PCTE-Au has higher coefficient of correlation with returned Raman spectra by 5.24% on average.
- PCTE-Au is not suitable for FTIR analysis at this gold coating thickness the PCTE substrate can be seen in the resultant spectra, while MPSN-Au returns a consistent and predictable background spectra.

© Copyright 2022 SiMPore Inc.

Acknowledgements

- Funding Support from NIH Grant No. NIEHS 2-R44-ES031036-02, awarded to SiMPore Inc.
- SEM collection conducted at Integrated Nanosystems Center (URnano) at the University of Rochester.
- Guidance regarding Raman spectroscopy from Dr. Samantha Romanick and Dr. Andrew Berger, University of Rochester.
- Microfabrication was carried out at the Semiconductor and Microsystems Fabrication Laboratory (SMFL) at the Rochester Institute of Technology.

