Application Notes

See how SiMPore’s nanomembrane-enabled products provide solutions for your research work.

UR researchers develop new method for liquid biopsies

Researchers at the University of Rochester are working on a method for rapid cancer diagnosis using SiMPore’s ultrathin nanomembranes. This technique, known as catch and display for liquid biopsies (CAD-LB), captures extracellular vesicles (EVs)—nano-sized carriers of cellular information—from minimally processed blood samples. By fluorescently labeling EVs caught in the membranes’ nanopores, CAD-LB enables quick detection […]

Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using “Catch and Display” on Ultrathin Nanoporous Silicon Nitride Membranes

Extracellular vesicles (EVs) are lipid-bound particles shed by all cells. They are involved in cell-cell communication, but have recently gained significant interest for their potential use as diagnostics and as therapeutics. Researchers from multiple Universities recently published work demonstrating the capability of SiMPore’s Silicon Nanomembranes for catch-and-display of single EVs, enabling novel analyses of these nano-sized bio particles […]

University of Rochester Researchers Develop Lung-to-Brain Tissue Chips to Study Respiratory Disease Impact on the Brain

The University of Rochester has received a $7.1 million contract from the Biomedical Advanced Research and Development Authority (BARDA) to develop innovative tissue-on-chip technology. This groundbreaking research aims to explore the link between respiratory diseases, such as influenza, and neurological symptoms like brain fog. The three-year project uses microphysiological systems (MPS)—tiny chips that simulate human […]

Join Our Newsletter and Save 10% on Your First Order